
Introduction to Modern Fortran

Alin M Elena

ukri stfc daresbury laboratory

July 15-16, 2024

Introduction to Modern Fortran

Introduction

General Programming Concepts

Source file rules

Intrinsic and user data types

Flow constructs

Functions and subroutines

Modules

Arrays and array constructs

Dynamical allocation of memory

Overloading

Input/Output

Pointers

Preprocessing

Compile/Link/Debug

Command line arguments

Random numbers

Extras

Introduction to Modern Fortran

Introduction

Introduction

General Programming Concepts

Source file rules

Intrinsic and user data types

Flow constructs

Functions and subroutines

Modules

Arrays and array constructs

Dynamical allocation of memory

Overloading

Input/Output

Pointers

Preprocessing

Compile/Link/Debug

Command line arguments

Random numbers

Extras

Introduction to Modern Fortran

Introduction

Why?

▶ In the good old days physicists repeated each other’s experiments, just to be

sure. Today they stick to FORTRAN, so that they can share each other’s

programs, bugs included.

Introduction to Modern Fortran

Introduction

What

▶ Besides a mathematical inclination, an exceptionally good mastery of one’s

native tongue is the most vital asset of a competent programmer.

▶ Simplicity is prerequisite for reliability.

▶ The easiest machine applications are the technical/scientific computations.

How do we tell truths that might hurt? E W Dijkstra, 18 June 1975

https://www.cs.utexas.edu/users/EWD/ewd04xx/EWD498.PDF

https://www.cs.utexas.edu/users/EWD/ewd04xx/EWD498.PDF

Introduction to Modern Fortran

Introduction

History

ENIAC, Computers, Mecanno

Introduction to Modern Fortran

Introduction

von Neumann Architecture

Four main components

▶ Memory

▶ Control unit

▶ Arithmetic Logic Unit

▶ Input/Output

First draft of a report on EDVAC, 1945, http://goo.gl/DnWs3t

http://goo.gl/DnWs3t

Introduction to Modern Fortran

Introduction

History of Fortran

▶ FORmula TRANslation - FORTRAN, these days Fortran

▶ Fortran I-IV, 1953-1961, public released 1957 with IBM 704 by John Backus

▶ Fortran 66, 1966 first standard, X3.9-1966

▶ Fortran 77, !X3J3/90.4, ISO 1539:1980

▶ Fortran 90, ISO/IEC 1539:1991

▶ Fortran 95, ISO/IEC 1539-1:1997

▶ Fortran 2003, ISO/IEC 1539-1:2004(E)

▶ Fortran 2008, ISO/IEC 1539-1:2010

▶ Fortran 2018, ISO/IEC 1539:2018

▶ Fortran 2023, under vote to be published in October

https://gcc.gnu.org/wiki/GFortranStandards

https://wg5-fortran.org/N2201-N2250/N2212.pdf

https://j3-fortran.org/doc/year/23/23-007r1.pdf

https://gcc.gnu.org/wiki/GFortranStandards
https://wg5-fortran.org/N2201-N2250/N2212.pdf
https://j3-fortran.org/doc/year/23/23-007r1.pdf

Introduction to Modern Fortran

Introduction

Features

FORTRAN 77 added:

▶ DO loops with a decreasing control variable (index).

▶ Block if statements IF … THEN … ELSE … ENDIF. Before F77 there were only IF

GOTO statements.

▶ Pre-test of DO loops. Before F77 DO loops were always executed at least once,

so you had to add an IF GOTO before the loop if you wanted the expected

behaviour.

▶ CHARACTER data type. Before F77 characters were always stored inside

INTEGER variables.

▶ Apostrophe delimited character string constants.

▶ Main program termination without a STOP statement.

Introduction to Modern Fortran

Introduction

Fortran 90 added

▶ Free format source code form (column independent)

▶ Modern control structures (CASE & DO WHILE)

▶ Records/structures - called “Derived Data Types”

▶ Powerful array notation (array sections, array operators, etc.)

▶ Dynamic memory allocation

▶ Operator overloading

▶ Keyword argument passing

▶ The INTENT (in, out, inout) procedure argument attribute

▶ Control of numeric precision and range

▶ Modules - packages containing variables and code

Introduction to Modern Fortran

Introduction

Fortran 95 added

▶ The FORALL statement and construct

▶ PURE user-defined procedures

▶ ELEMENTAL user-defined procedures

▶ Pointer initialization

▶ Derived-type structure default initialization

▶ Automatic deallocation of allocatable arrays

▶ CPU_TIME intrinsic subroutine

▶ Printing of -0.0

▶ Enhanced WHERE construct

▶ Zero-length formats

▶ user derived data-types, can have allocatable components

Introduction to Modern Fortran

Introduction

Fortran 2003 added

▶ Data enhancements and object orientation

▶ Parameterized derived types

▶ Procedure pointers

▶ Finalization

▶ Procedures bound by name to a type

▶ Type extension

▶ Overriding a type-bound procedure

▶ Enumerations

▶ The VOLATILE attribute

▶ Input/output enhancements

▶ Asynchronous input/output

▶ Intrinsic function for newline character

▶ Stream access input/output

▶ Interoperability with C

full changes https://wg5-fortran.org/N1601-N1650/N1648.pdf

https://wg5-fortran.org/N1601-N1650/N1648.pdf

Introduction to Modern Fortran

Introduction

Fortran 2008

▶ Coarrays

▶ submodules

▶ do concurrent

▶ Contiguous attribute

▶ Implied-shape array

▶ Long integers

▶ Omitting an allocatable component in a structure constructor

▶ Finding a unit when opening a file

▶ g0 edit descriptor

▶ Bessel, error and gamma functions, Euclidean vector norms

full changes https://wg5-fortran.org/N1801-N1850/N1828.pdf

https://wg5-fortran.org/N1801-N1850/N1828.pdf

Introduction to Modern Fortran

Introduction

Fortran 2018

▶ Further interoperability of Fortran with C

▶ Additional parallel features in Fortran

▶ Conformance with ISO/IEC/IEEE 60559:2011

obsolescences

▶ common and equivalence

▶ Labelled do statements

▶ Specific names for standard intrinsic functions

▶ The forall construct and statement

full changes

https:

//isotc.iso.org/livelink/livelink?func=ll&objId=19441669&objAction=Open&viewType=1

https://isotc.iso.org/livelink/livelink?func=ll&objId=19441669&objAction=Open&viewType=1
https://isotc.iso.org/livelink/livelink?func=ll&objId=19441669&objAction=Open&viewType=1

Introduction to Modern Fortran

Introduction

Fortran 2023

▶ lines longer than 132

▶ improvements to co-arrays

▶ enumerations

▶ integer arrays to specify subscripts and section subscripts

▶ no new obsoleted features

▶ https://wg5-fortran.org/N2201-N2250/N2212.pdf

https://wg5-fortran.org/N2201-N2250/N2212.pdf

Introduction to Modern Fortran

Introduction

Hello world!

0 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

IBM 888157

STATEMENT
NUMBER FORTRAN STATEMENT
C← FOR

COMMENT

CO
NT

IN
UA

TI
ON

IDENTIFICATION

1 program hello
2 implicit none
3 print *, ”hello world”
4 end program hello

Introduction to Modern Fortran

Introduction

References

▶ Standard Fortran 2018

http://isotc.iso.org/livelink/livelink?func=ll&objId=19442438&objAction=Open

▶ Michael Metcalf, John Reid, Malcolm Cohen, Modern Fortran Explained, 5th

Edition, Oxford University Press

▶ Markus Arjen,Modern Fortran in Practice, Cambridge University Press

▶ Norman S. Clerman, Walter Spector, Modern Fortran, Cambridge University

Press

▶ Walter S. Brainerd, Guide to Fortran 2008 Programming, Springer; 2nd ed. 2015

▶ Milan Curcic, Modern Fortran Building efficient parallel applications, Manning,

2020

▶ https://fortran-lang.org/

▶ gcc collection of standards https://gcc.gnu.org/wiki/GFortranStandards

Practicals for afternoon http://ccp5.gitlab.io/summerschool/

http://isotc.iso.org/livelink/livelink?func=ll&objId=19442438&objAction=Open
https://fortran-lang.org/
https://gcc.gnu.org/wiki/GFortranStandards
http://ccp5.gitlab.io/summerschool/

Introduction to Modern Fortran

General Programming Concepts

Introduction

General Programming Concepts

Source file rules

Intrinsic and user data types

Flow constructs

Functions and subroutines

Modules

Arrays and array constructs

Dynamical allocation of memory

Overloading

Input/Output

Pointers

Preprocessing

Compile/Link/Debug

Command line arguments

Random numbers

Extras

Introduction to Modern Fortran

General Programming Concepts

Programs

What is a program?
A program is the implementation of an algorithm in a specific programming

language. (eg Fortran, C, C++, python)

Generic elements of a program

▶ Comments

▶ Statements

▶ Variables

▶ Flow control

▶ Subprograms

▶ Modules

Introduction to Modern Fortran

General Programming Concepts

Comments&Statements

1. Comments: intended for the humans and totally ignored by the machine

2. Statements

▶ Control the flow of the program

▶ May resemble mathematical formulae (x=y+1)

▶ Executed one after another in the order in which they are written

▶ They are terminated by a special character

▶ Statements can be multiline

Introduction to Modern Fortran

General Programming Concepts

Variables

▶ a named sequence of memory locations to which a value can be assigned

▶ every variable has an address in the memory

▶ each variable must have a type (real, integer, character …)

▶ variables should have meaningful names

▶ variables should be assigned a value before usage

▶ assignment operator “=”: assigns the value of the expression from the right to

the variable from the left x=2*sin(y)

▶ “=” is not restricted only to mathematical expressions

▶ A variable may not change its value during the program execution. We should

call it a constant then.

Introduction to Modern Fortran

General Programming Concepts

Variables - data types

▶ an attribute of a variable

▶ an abstract description of how data is represented in memory

▶ predefined types or

▶ user defined types

▶ dictate what kind of operators/expressions/statements can be employed on

variables.

▶ describe integers, real numbers, complex, characters, etc…

Introduction to Modern Fortran

General Programming Concepts

Flow control - loops

Loops are constructs that repeat a certain sequence of statements.

They can be with finite or unknown number of iterations.

do i=begin,end,increment
<statements>

end

<statements> can be as complex as one wants and they may include other do

constructs (nesting).

One should be able to abandon the loop or the current iteration if needed.

Introduction to Modern Fortran

General Programming Concepts

More loops

A priori conditioned loops:

do while (logical expression)
<statements>
end do

The loop is executed as long the logical expression holds true.

The <statements> may not be executed at all if the logical expression does evaluate to

false first time.

Introduction to Modern Fortran

General Programming Concepts

More loops…

A posteriori conditioned loops:

do
<statements>
if (logical expression) exit loop

end do

<statements> get executed at least once. The loop is executed as long as the logical

expression evaluates to false.

For both constructs the number of iterations is unknown.

Introduction to Modern Fortran

General Programming Concepts

Flow control - conditionals

A lot of times one may have to decide to execute a set of instructions for one situation

and another for other situation. This is called branching.

If (logical expression) then
<statements 1>

else
<statements 2>

endif

<statements> can be as complex as one wants and they may include other if

constructs. <logical expression> should be any valid Boolean expression that

evaluates to true or false.

Introduction to Modern Fortran

General Programming Concepts

Conditionals

If (logical expression) then
<statements 1>

endif

If (logical expression1) then
<statements 1>

elseif (logical expression2) then
<statements 2>

else
<statements 3>

endif

Introduction to Modern Fortran

General Programming Concepts

Unconditional jumps

goto label1
<some statements>

label1: point we jump to.

go to should be avoided and used only if no alternative exists. In day to day

programming goto can be avoided almost every time.

E Dijkstra, Go To Statements Considered Harmful, Communications of the ACM,

11(3),1968 https://homepages.cwi.nl/~storm/teaching/reader/Dijkstra68.pdf

Andrew Koenig http://www.drdobbs.com/cpp/what-dijkstra-said-was-harmful-

about-got/228700940

…

“For a number of years I have been familiar with the observation that the quality of

programmers is a decreasing function of the density of go to stattements in the

programs they produce.”

E Dijkstra, 1968

Introduction to Modern Fortran

General Programming Concepts

Subprograms

▶ well defined parts of a programming language. They contain sequences of

statements that can be called again and again in a program

▶ they can be functions or subroutines

▶ a subprogram takes a set of arguments and can return a result, change the

values of arguments or simply do some I/O.

real function distance(x,y)
distance = sqrt(x*x+y*y)

end function

subroutine distance(r,x,y)
r = sqrt(x*x+y*y)

end subroutine

Introduction to Modern Fortran

General Programming Concepts

Modules

▶ Program entities that package subprograms, variables, constants so that they

can be easily reused.

▶ Typically break your program into 1 module per file.

▶ can have submodules

▶ In addition almost any programming language should offer: input/output

facilities and memory management features.

Introduction to Modern Fortran

Source file rules

Introduction

General Programming Concepts

Source file rules

Intrinsic and user data types

Flow constructs

Functions and subroutines

Modules

Arrays and array constructs

Dynamical allocation of memory

Overloading

Input/Output

Pointers

Preprocessing

Compile/Link/Debug

Command line arguments

Random numbers

Extras

Introduction to Modern Fortran

Source file rules

Fortran characters

▶ Digits, letters, underscore and special characters form the fortran character set

▶ A lower case letter is equivalent with the upper case counterpart so call

myfunction is the same as CALL MYFUNCTION

▶ The underscore is a valid character in a name

▶ Maximum length of a name is 63 characters

▶ There are two source forms: fixed and free. They should not be mixed in the

same programming unit

Introduction to Modern Fortran

Source file rules

Free source (modern)

▶ modern but not new… around since Fortran90

▶ No restrictions on where a statement may appear on a line

▶ Lines may have zero characters

▶ A line may have at most 132 characters

▶ Blanks can appear with a meaning only in a character context or a format

specifier

▶ Tokens can be separated by as many blanks you want. In these situations more

blanks are considered one blank

▶ At least one blank should be used to separate names, labels, constants from

other entities

Introduction to Modern Fortran

Source file rules

…

▶ Some keywords may miss the blank: end do, end if, end function… (enddo, endif,

endfunction)

▶ ! marks the start of a comment

▶ & at the end of the line but before any ! marks continuation on the next line

▶ ; and <enter> marks a statement termination

▶ no statement may start with a digit

▶ only 255 continuation lines are allowed for one statement

Introduction to Modern Fortran

Source file rules

Fixed source (ancient)

▶ lines are limited to 72 characters

▶ the same rules on blanks as free form

▶ ! marks a comment except when is in a string or in column 6

▶ C or * in column 1 mark a comment

▶ Column 6 marks if a line is a continuation or not; blank or zero mean new

statement

▶ Columns 7-72 may contain statements

▶ Col 1-5 may contain only labels if they are not comments

▶ avoid using it…

Introduction to Modern Fortran

Intrinsic and user data types

Introduction

General Programming Concepts

Source file rules

Intrinsic and user data types

Flow constructs

Functions and subroutines

Modules

Arrays and array constructs

Dynamical allocation of memory

Overloading

Input/Output

Pointers

Preprocessing

Compile/Link/Debug

Command line arguments

Random numbers

Extras

Introduction to Modern Fortran

Intrinsic and user data types

Data types

In Fortran there are 3 intrinsic numerical types

▶ integer

▶ real

▶ complex

All of them have an optional argument kind that allows the user to specify the

precision.

integer (kind=4) :: a
real(kind=8) :: b
complex(kind=8) :: c

Introduction to Modern Fortran

Intrinsic and user data types

…

please note that the use of kind obsoletes the double precision and double complex

types from old Fortran

to select an integer in the range -10^9, 10^9

long=selected_int_kind(9)
integer (kind=long) :: a
a=10_long

for a real with 15 digits precision and exponent range +/- 307 (equivalent of the

double precision)

double=selected_real_kind(15,307)
real(kind=double) :: b
b=1.0_double

Introduction to Modern Fortran

Intrinsic and user data types

literals

▶ type to represent literal data

character(len=42) :: a, b=”12”,&
c=”john's”, d='h'

Ŀ~}X~}12 john's h

intrinsic functions comparing strings

▶ LGE(A,B)

▶ LGT(A,B)

▶ LLE(A,B)

▶ LLT(A,B)

Introduction to Modern Fortran

Intrinsic and user data types

logicals

▶ boolean type which has only two values .true. or .false.

logical :: a
a = .true.

▶ default kind for a logical is the same as for integer

Introduction to Modern Fortran

Intrinsic and user data types

via iso_fortran_env

predefined kind values

▶ int8, int16, int32, int64,

▶ real32, real64, real128

all available kinds can be found using

▶ real_kinds, logical_kinds,character_kinds,integer_kinds

▶ atomic_int_kind, atomic_logical_kind

character_kinds can be used in kind for characters, but they have poor support in

compilers for anything beyond ASCII (kind=1)

Introduction to Modern Fortran

Intrinsic and user data types

User defined types

In a lot of situations the intrinsic types are not convenient to describe your data. Let

us think about storing data about a person. For each person you need to know name,

age, weight. A nice and convenient way is to use user defined types. In Fortran would

be

type :: personType
Character(len=100) :: name
logical :: isMarried
integer :: age
real :: weight

end type personType

type(personType) :: a
a%name=”John Smith”; a%isMarried=.false.
a%age=25; a%weight=75.00

Introduction to Modern Fortran

Intrinsic and user data types

Type bound procedures

type :: personType
Character(len=100) :: name
logical :: isMarried
integer :: age;real :: weight
contains
procedure :: init
final :: cleanup

end type personType

call a%init()

first parameter needs to be of class(personType) for procedures

first parameter needs to be of type(personType) for final

Introduction to Modern Fortran

Intrinsic and user data types

Implicit none

▶ In the dim and ancient past, FORTRAN did not need types to be specified.

▶ You could just use the variables, and FORTRAN assumed a type.

▶ You Still Can. Just Don’t.

a = 1.2
i = 2
r = 2.0

▶ The rules were (and are):

▶ Anything starting: I,j,k,l,m,n are implicitly assumed integer.

▶ Other variables assumed to be real. No sizes specified.

Introduction to Modern Fortran

Intrinsic and user data types

Implicit

▶ You can change this behaviour using “implicit”

implicit integer (i-n), real (c-k), type(mine) (a,b)

▶ This is bad practice and leads to errors. Instead, do

implicit none

▶ before variable declarations to turn off implicit behaviour.

▶ Any undefined variables after that will cause an error.

Introduction to Modern Fortran

Intrinsic and user data types

Variable attributes: volatile

Variable definitions can have attributes: one example here is volatile

integer, volatile :: a

Rarely used in Fortran code (seen in C/C++ more often) it means a variable may be

changed outside the scope of the Fortran program; i.e. by another program,

hardware (its a memory register), etc.

Used to tell the compiler to avoid optimisations.

Introduction to Modern Fortran

Intrinsic and user data types

Variable attributes: save

▶ The save attribute specifies that a local variable of a program unit or

subprogram retains its association status, allocation status, definition status,

and value after execution of a RETURN or END statement unless it is a pointer

and its target becomes undefined

▶ If it is a local variable of a subprogram it is shared by all instances of the

subprogram.

integer, save :: a
integer :: b=10

Introduction to Modern Fortran

Intrinsic and user data types

Variable attributes: parameter

▶ marks a variable as constant

integer, parameter :: a = 10

Introduction to Modern Fortran

Intrinsic and user data types

Variables scope

the scope of a variable restricts to the programming unit is declared in it: module,

program, function or subroutine

k = 10
block

integer :: k

k=1
end block
!k is still 10

Introduction to Modern Fortran

Flow constructs

Introduction

General Programming Concepts

Source file rules

Intrinsic and user data types

Flow constructs

Functions and subroutines

Modules

Arrays and array constructs

Dynamical allocation of memory

Overloading

Input/Output

Pointers

Preprocessing

Compile/Link/Debug

Command line arguments

Random numbers

Extras

Introduction to Modern Fortran

Flow constructs

Comments

! marks the beginning of a comment <end of line> the end of the comment
Good practice mean that you should document your code. Add comments ex-

plaining what your program, piece of code does rather than how it does it.

Hint: Old FORTRAN could not have blank lines. So you will see lines beginning with ‘C’

for comment but containing nothing.

replace them with a blank line for clarity.

Introduction to Modern Fortran

Flow constructs

Expressions & statements

Variable = expression

▶ Variable can be of any intrinsic or derived type (“=” has to make sense for the

derived type)

▶ Expressions are usually mathematical expressions. They are combinations of

operators (arithmetic or relational) and operands.

▶ An expression is evaluated according to the precedence rules of operators

Introduction to Modern Fortran

Flow constructs

Operators

Addition +

Subtraction -

Multiplication *

Division /

Exponentiation **

Expression grouping ()

Concatenation //

+,- can be binary or unary operators

a-b, a+b -> binary

-a, +a -> unary

Introduction to Modern Fortran

Flow constructs

Relational Operators

equal to ==

not equal /=

less than <

less or equal <=

greater >

logical not .NOT.

logical and .AND.

logical inclusive or .OR.

logical exclusive or .XOR.

logical equivalent .EQV.

logical not equivalent .NEQV.

Introduction to Modern Fortran

Flow constructs

Operators

Precedence of operators
(), *, /, + -(unary), + - (binary), //, == /= < <= > >=, .NOT., .AND. .OR. .EQV. .NEQV.

Parenthesis can be used to change the precedence of operators

a=1
b=2
c=a+b**3 ! c=9
d=(a+b)**3 ! d=27

Introduction to Modern Fortran

Flow constructs

Bit wise

▶ bge(i, j) Bitwise greater than or equal to.

▶ bgt(i, j) Bitwise greater than.

▶ ble(i, j) Bitwise less than or equal to.

▶ blt(i, j) Bitwise less than.

▶ i,j integer or boz literal constant

▶ ishft(i,shift)

▶ ishftc

▶ ior, ieor and iand

▶ not

▶ iall, iany, iparity

Introduction to Modern Fortran

Flow constructs

Examples

! save me in types.F90
module myTypes
use iso_fortran_env, only : real64
implicit none
private
integer, parameter, public :: &
kpr=real64

end module myTypes

Introduction to Modern Fortran

Flow constructs

…

! save in test.F90
program test

use myTypes
implicit none
real(kpr) :: a,b,c,f
integer :: i,j,k
character(len=100) :: name,lastName,d

a=10.0_kpr; b=15.0_kpr
c=sqrt(a*a+b**2)
i=10; j=4; k=i/j
f=real(i,kpr)/real(j,kpr)
name=”John”; lastName=”Smith”
d = trim(name)//” ”//trim(lastName)
print *,c,k,d,f

end program test

Introduction to Modern Fortran

Flow constructs

…

$ gfortran -o exe types.f90 test.f90
$./exe
18.027756377319946 2 John Smith

2.5000000000000000

Introduction to Modern Fortran

Flow constructs

Flow control statements

Conditional execution if/endif

Conditional alternates else/elseif

Loop known no of iterations do/enddo

Loop unknown no of iterations do while/enddo

Terminate and exit loop exit

Skip the rest of current iteration cycle

conditional case selection select case/end select

Stop execution stop

I/O statements read/print/write

Conditional array action where/elsewhere

Logical or array Any, All

Introduction to Modern Fortran

Flow constructs

Conditionals

if (test) then
<statements 1>
else
<statements 2>
end if

if (test) then
<statements>
end if

if (test) <statement>

Introduction to Modern Fortran

Flow constructs

…

if (test1) then
<statements 1>

elseif (test2) then
<statements 2>

else
<statements 3>

end if

Introduction to Modern Fortran

Flow constructs

Example

! save in roots.F90
program test

use myTypes
implicit none
real(kpr) :: a,b,c,d

a=1.0_kpr; b=-3.0_kpr; c=2.0_kpr
d= b*b-4*a*c
if (abs(d)<epsilon(1.0_kpr)) then
print *, -b/(2.0_kpr*a)

else
print *, (-b+sqrt(d))/(2.0_kpr*a),&

(-b-sqrt(d))/(2.0_kpr*a)
endif

end program test

Introduction to Modern Fortran

Flow constructs

select

Select is a switching construct allowing the user to write long sequences of

if/elseif/endif in a nice and compact way. Cases are selected according to an integer

or character expression

select case(expression)
case (value1)
<statements 1>
...
case (valueN)
<statements N>
case default
<statements defaul

end select

The select construct can be named and used in the closing end.

Introduction to Modern Fortran

Flow constructs

Example

program selectEx
implicit none
integer :: i
Integer, parameter :: EVEN=0, ODD=1

print *,”input integer: ”
read(*,*)i
select case (mod(i,2))
case (EVEN)
print *,”even integer”

case (ODD)
print *,”odd integer”

end select

end program selectEx

Introduction to Modern Fortran

Flow constructs

Loops

do index=b,e,i
<statements>

end do

program loop1
implicit none
integer :: i,n=10

do i=1,n
print *,i,i**2

end do
end program loop1

Introduction to Modern Fortran

Flow constructs

Loops 2

do while (test)
<statements>

end do

program loop2
implicit none
integer :: i,n=10
i=1
do while (i<=n)
print *,i,i**2
i=i+1

end do
end program loop2

Introduction to Modern Fortran

Flow constructs

Loops 3

do
<statements>
if (test) exit

end do

program loop3
implicit none
integer :: i,n=10
i=1
do
print *,i,i**2
i=i+1
if (i>n) exit

end do
end program loop3

Introduction to Modern Fortran

Flow constructs

Implied loops

Implied loops – a convenient way of writing loops very compact
(object, index=b,e,i)

they can appear only in

▶ Read actions

▶ Print, write actions

▶ Data variable definition

▶ Definition of array elements

Introduction to Modern Fortran

Flow constructs

….

print *, (i*i,i=1,n,2)

would print the squares of all odd integers from 1 to n

print *,((i*j,i=1,n),j=1,n)

Introduction to Modern Fortran

Flow constructs

Nested loops & exit

do i=1,n
do j=1,m
<statements>
if (test) exit

end do
end do

Here exit will exit the closest enclosing loop (j for us). To exit the i loop one should use

the labels

Introduction to Modern Fortran

Flow constructs

Nested loops & exit…

main: do i=1,n
sec: do j=1,m
<statements>
if (test) exit main

end do sec
end do main

lexit=.false.
do i=1,n

do j=1,m
<statements>
if (test) then

lexit=.true.
exit

end if
end do
if (lexit) exit

end do

Introduction to Modern Fortran

Flow constructs

Examples

program loopExit
implicit none

integer :: i,j,n=10

do i=1,n
do j=1,n

if (i*j> 50) exit
print *,i,j

end do
end do

end program loopExit

Introduction to Modern Fortran

Flow constructs

…

program loopExit
implicit none

integer :: i,j,n=10

main: do i=1,n
sec: do j=1,n

if (i*j> 50) exit main
print *,i,j

enddo sec
enddo main

end program loopExit

Introduction to Modern Fortran

Flow constructs

cycle

do i=1,n
<statements 1>
if (test) cycle
<statements 2>
end do

when condition test is true <statements 2> is skipped and the next iteration is started.

Introduction to Modern Fortran

Flow constructs

Example

program loopCycle
implicit none
integer ::i, n=10

do i=1,n
print *,”processing: ”,i
if (mod(i,2)==0) then
print *,”skip this one”
cycle

endif
print *,i,i*i
enddo

end program loopCycle

Introduction to Modern Fortran

Functions and subroutines

Introduction

General Programming Concepts

Source file rules

Intrinsic and user data types

Flow constructs

Functions and subroutines

Modules

Arrays and array constructs

Dynamical allocation of memory

Overloading

Input/Output

Pointers

Preprocessing

Compile/Link/Debug

Command line arguments

Random numbers

Extras

Introduction to Modern Fortran

Functions and subroutines

Introduction

subroutine s(a1,a2,...,an)
type, intent :: a1,a2,..., an

<statements>
end subroutine s

function f (a1,a2,..., an)
type :: f
type, intent :: a1,a2,..., an
<statements>

f=<expression>
end function f

Introduction to Modern Fortran

Functions and subroutines

function styles 1

program function1
use myTypes
implicit none

real(kpr) :: a,b
a=1.0_kpr; b=2.0_kpr;
print *,dist(a,b)

contains
function dist(x,y)
real(kpr) :: dist
real(kpr), intent(in) :: x,y

dist=sqrt(x*x+y*y)
end function dist

end program function1

Introduction to Modern Fortran

Functions and subroutines

function styles 2

program function2
use myTypes
implicit none

real(kpr) :: a,b
a=1.0_kpr; b=2.0_kpr;
print *,dist(a,b)

contains
function dist(x,y) result(d)
real(kpr) :: d
real(kpr), intent(in) :: x,y

d=sqrt(x*x+y*y)
end function dist

end program function2

Introduction to Modern Fortran

Functions and subroutines

function styles 3

program function3
use myTypes
implicit none

real(kpr) :: a
a=1.0_kpr;
print *,dist(a,2.0_kpr)

contains
real(kpr) function dist(x,y)
real(kpr), intent(in) :: x,y

dist=sqrt(x*x+y*y)
end function dist

end program function3

Introduction to Modern Fortran

Functions and subroutines

subroutines 1

program sub1
use myTypes
implicit none

real(kpr) :: a,b,r
a=1.0_kpr; b=2.0_kpr
call dist(r,a,b);print *,r

contains
subroutine dist(r,x,y)
real(kpr), intent(in) :: x,y
real(kpr), intent(out) :: r
r=sqrt(x*x+y*y)

end subroutine dist
end program sub1

Introduction to Modern Fortran

Functions and subroutines

subroutines 2

program sub2
use myTypes; implicit none
real(kpr) :: a,b,r,a1,b1
a=1.0_kpr; b=2.0_kpr;a1=1.0_kpr; b1=0.0_kpr
call dist(r,a1,b1,a,b); print *,r
call dist(r,x=a,y=b); print *,r

contains
subroutine dist(r,x1,y1,x,y)
real(kpr), intent(in) :: x,y
real(kpr), optional, intent(in) :: x1,y1
real(kpr), intent(out) :: r
if (present(x1)) then

r=sqrt((x-x1)*(x-x1)+(y-y1)*(y-y1))
else

r=sqrt(x*x+y*y)
endif

end subroutine dist
end program sub2

Introduction to Modern Fortran

Functions and subroutines

recursive

F𝑛 = F𝑛−1 + F𝑛−2
F0 = 0 F1 = 1

recursive integer function fibonacci(n) result(r)
integer, intent(in) :: n

if (n<2) then
r=n

else
r=fibonacci(n-1)+fibonacci(n-2)

endif
end function fibonacci

Introduction to Modern Fortran

Functions and subroutines

pure

▶ Pure functions/subroutines, depend only the data provided by the list of

arguments

▶ for functions all arguments need intent(in)

▶ for procedures arguments can be intent(in|out)

▶ side effects only for arguments which contain intent out

▶ may give freedom to compiler to optimize

▶ one cannot do IO

▶ one cannot call procedures which are not pure

▶ are mandatory if to be issued in a do .. concurrent

pure function dist(x1,y1,x,y)
pure subroutine dist(r,x1,y1,x,y)

Introduction to Modern Fortran

Functions and subroutines

elemental

▶ scalar operators

▶ scalar dummy argument

▶ scalar return value

▶ but they can be invoked on arrays

▶ in the array case are applied element wise

▶ Elemental subroutines, side effects are permitted via arguments.

▶ elemental procedures are usually pure if not the case use impure to mark it as

such

elemental real function test3(x)
real, intent(in) :: x
test3 = x*x

end function test3

real :: z(4)=[1.0,2.0,3.0,4.0]
print *, test3(z)

Introduction to Modern Fortran

Functions and subroutines

Intrinsic

▶ Fortran contains a large variety of intrinsic functions and subroutines

▶ check the standard (Fortran 2008), chapter 13, page 315 for a complete set

Introduction to Modern Fortran

Modules

Introduction

General Programming Concepts

Source file rules

Intrinsic and user data types

Flow constructs

Functions and subroutines

Modules

Arrays and array constructs

Dynamical allocation of memory

Overloading

Input/Output

Pointers

Preprocessing

Compile/Link/Debug

Command line arguments

Random numbers

Extras

Introduction to Modern Fortran

Modules

…

▶ Modules are program units that can encapsulate variables, constants, and/or

subprograms for easy reuse in the main program or other program units.

▶ Good practice says that you should have one module per file.

▶ can have submodules, not discussed in here.

Introduction to Modern Fortran

Modules

using modules 1

module algebra
use myTypes
implicit none
private
integer, parameter, public :: kN=100
integer :: M=200
integer, public, save :: a
public :: dist
contains

subroutine dist(r,x,y)
real(kpr), intent(inout) :: r
real(kpr), intent(in) :: x,y
r=sqrt(x*x+y*y)

end subroutine dist
end module algebra

Introduction to Modern Fortran

Modules

using modules 2

program testModule
use myTypes, only : kpr
use algebra
implicit none
real(kpr) :: x1,y1,r
x1=1.0_kpr;y1=2.0_kpr;
call dist(r,x1,y1); print *,r
a=30

end program testModule

Introduction to Modern Fortran

Arrays and array constructs

Introduction

General Programming Concepts

Source file rules

Intrinsic and user data types

Flow constructs

Functions and subroutines

Modules

Arrays and array constructs

Dynamical allocation of memory

Overloading

Input/Output

Pointers

Preprocessing

Compile/Link/Debug

Command line arguments

Random numbers

Extras

Introduction to Modern Fortran

Arrays and array constructs

Arrays (I)

arrays are indexed sets of values of the same type

integer :: a(10) ! one dimensional array of integers with 10 values

integer :: b(10,10) ! two dimensional array 10 rows and 10 columns

7 is the maximum number of dimensions for an array in Fortran

By default the first element is a(1), b(1,1)

integer :: a(-1:8)

can be of any intrinsic or user defined type

Introduction to Modern Fortran

Arrays and array constructs

Arrays (II)

in memory the arrays are kept in contiguous linear chunks.

a 2d array is stored column by column from the first to the last row (column major)

1 2 3
4 5 6 𝑖𝑠 (1, 4, 2, 5, 3, 6)

a=10 ! will set all elements of a to 10

b=9 ! will set all elements of b to 9

a(3:5)=11 ! will set a(3), a(4), a(5) to 11

b(1,:)=12 ! will set all elements from row 1 to 12

Introduction to Modern Fortran

Arrays and array constructs

Arrays (III)

an array can be reshaped

integer :: a(2,3)
a=reshape([1,2,3,4,5,6],[2,3]) !or
a=reshape([1,2,3,4,5,6],shape(a))

𝑎 = 1 3 5
2 4 6

integer :: a(2,3), b(10,10)
a=b(1:2,1:3)
a=b(4:5,6:8)

Introduction to Modern Fortran

Arrays and array constructs

…

One can use full B:E:I construct to play with the arrays

𝑎 = 1 2
3 4

𝑏 = 𝑎(∶, 2 ∶ 1 ∶ −1) = 2 1
4 3

𝑏 = 𝑎(2 ∶ 1 ∶ − 1, ∶) = 3 4
1 2

Introduction to Modern Fortran

Arrays and array constructs

…

integer :: a(2,2),b(2,2),i
a = reshape([1,3,2,4],[2,2])
do i=1,2

write(*,'(i0,1x,i0)') a(i,:)
enddo

b=a(:,2:1:-1)
do i=1,2

write(*,'(i0,1x,i0)') b(i,:)
enddo

b=a(2:1:-1,:)
do i=1,2

write(*,'(i0,1x,i0)') b(i,:)
enddo

Introduction to Modern Fortran

Arrays and array constructs

Specifying data and arrays

x = (/ 1.0, 2.0, 3.0, 4.0, 5.0 /) !or
x = [1.0, 2.0, 3.0, 4.0, 5.0]

a = 42.0_8*[(i/10.0_8,i=1,n)]
b = [(i/(1.0_8+i*i),i=1,n)]
c = [(sin(a(i)+2.0_8*b(i)),i=1,n)]

or you can use data. see the standard

Introduction to Modern Fortran

Arrays and array constructs

Intrinsic Functions

Fortran has a rich set of intrinsic functions that act on arrays matching mathematical

functions

a=b+c;

if c is a scalar would be added to all elements of a

if c a vector element by element addition. This holds for -,*,/,**, too.

c=transpose(a)
c=conjg(a)
c=matmul(a,b)
c=dot_product(a,b)

Introduction to Modern Fortran

Arrays and array constructs

Array constructs

array constructs: all, any, count, maxloc, maxval, merge, minloc, minval, pack, unpack,

sum, product, where

where (test)
<assignments>

elsewhere
<assignments>

end where

Introduction to Modern Fortran

Arrays and array constructs

…

integer :: x(5)
x=[-1,2,-5,-10,3]

where (x<0)
x=-x

end where

do i=1,5
if(x(i)<0) then
x(i)=-x(i)

endif
enddo

Introduction to Modern Fortran

Arrays and array constructs

…

integer :: x(5)
x=[-1,2,-5,-10,3]
print *,any(x<0) ! returns true
print *, all(x>0) ! returns false

the arrays constructs do not represent new concepts. They are just convenience

statements for user.

Introduction to Modern Fortran

Arrays and array constructs

Dimension statement

This is the old form of how to describe arrays. The syntax

dimension a(10), b(20,40)

was used at the top of the program / subprogram (variable definitions).

Avoid this form. In modern Fortran, we use either:

real, dimension(10) :: a
real, dimension(:) :: b
real :: x(10)

Introduction to Modern Fortran

Arrays and array constructs

Passing arrays assumed shape

subroutine pass1(x)
integer, intent(inout), contiguous :: x(:)
x=10

end subroutine pass1

When you pass an array with assumed shape, extent is lost

Introduction to Modern Fortran

Arrays and array constructs

…

! assumed shape
real, dimension(-3:3) :: y,x
call pass1(x,y,start)

subroutine pass1(x,y,start)
integer :: start
real, intent(inout) :: x(-3:),y(start:)

end subroutine pass1

Introduction to Modern Fortran

Arrays and array constructs

Passing arrays assumed size

! assumed size
subroutine pass2(x,n)

integer, intent(inout) :: x(*)
integer, intent(in) :: n
integer :: i
do i=1,n
x(i)=10

enddo
end subroutine pass2

Old style. In Fortran 77, Arrays were contiguous. They had size, but not shape.

Can’t do whole array operations: x=10. The upper bound in the last dimension must

appear in the reference to the assumed size array

Array needs to be contiguous. Reshaping I/O, are not safe.

Introduction to Modern Fortran

Arrays and array constructs

Passing arrays adjustable size

! Adjustable size
subroutine pass3(x,n)

integer, intent(inout) :: x(n)
integer, intent(in) :: n
integer :: i
do i=1,n
x(i)=10

enddo
end subroutine pass3

Introduction to Modern Fortran

Arrays and array constructs

size, bound functions

These give the size, upper bound, lower bound of a passed array.

▶ size(array,dim); lbound(array, dim); ubound(array,dim)

subroutine subtest(array)
real(kind=8), allocatable, intent(in) :: array(:,:)
integer :: iii, jjj

if(allocated(array)) then
print*, size(array, 1), size(array, 2)
do iii = lbound(array, 1), ubound(array, 1)

do jjj = lbound(array, 2), ubound(array, 2)
print*, array(iii,jjj)

enddo
enddo

endif
end subroutine

Introduction to Modern Fortran

Arrays and array constructs

assumed rank arrays

assummed objects can be array or scalar

real :: a0
real :: a1(2)
real :: a2(3,3)
real :: a3(4,4)

call sub(a0); call sub(a1); call sub(a2); call sub(a3)

contains

subroutine sub(a)
real, intent(inout) :: a(..)
print *, rank(a)

end subroutine sub

for per rank operations use select rank

Introduction to Modern Fortran

Dynamical allocation of memory

Introduction

General Programming Concepts

Source file rules

Intrinsic and user data types

Flow constructs

Functions and subroutines

Modules

Arrays and array constructs

Dynamical allocation of memory

Overloading

Input/Output

Pointers

Preprocessing

Compile/Link/Debug

Command line arguments

Random numbers

Extras

Introduction to Modern Fortran

Dynamical allocation of memory

Introduction

▶ We do not know the size of the array before running the program

▶ We want to minimize the usage of memory

▶ We want to reuse memory

allocate/deallocate/allocated

▶ Static arrays by default go to stack

▶ Dynamic arrays go to heap

▶ good practice says that the number of allocate statements should be equal with

the number of deallocate statements

▶ deallocate memory in reverse order of allocation, avoid memory fragmentation

Introduction to Modern Fortran

Dynamical allocation of memory

Example

integer, allocatable :: a(:), b(:,:)
integer :: info, n=15,m=10
allocate(a(n),b(n,m),stat=info)
a=10
b=35
deallocate(a,stat=info)
allocate(a(n/2),stat=info)
a=b(1:7,5)
deallocate(a,b,stat=info)

Introduction to Modern Fortran

Dynamical allocation of memory

…

! one can check if an array is allocated
integer, allocatable, dimension(:) :: a
if (.not. allocated(a)) then

allocate(a(n))
a=0

else
deallocate(a)
allocate(a(n))
a=0

endif

Introduction to Modern Fortran

Dynamical allocation of memory

Automatic arrays

integer function test(n)
integer, intent(in) :: n
real :: a(n)

….
end function test

a is an automatic array and it exists only during the lifetime of the function test.

As automatic array get created and destroyed at entry/exit they may be a very

expensive business.

Introduction to Modern Fortran

Overloading

Introduction

General Programming Concepts

Source file rules

Intrinsic and user data types

Flow constructs

Functions and subroutines

Modules

Arrays and array constructs

Dynamical allocation of memory

Overloading

Input/Output

Pointers

Preprocessing

Compile/Link/Debug

Command line arguments

Random numbers

Extras

Introduction to Modern Fortran

Overloading

Procedure Overloading

Modules offer another useful option: Overloading.

▶ Using the same name for different subprograms which have different numbers

of arguments of different types

▶ Extending the usage of some operators

interface AddMatrix
module procedure AddMatrixv1, AddMatrixv2

end interface

AddMatrixv1 and AddMatrixv2 are normal subprograms enclosed in the same

module.

Introduction to Modern Fortran

Overloading

Example

interface field_write
module procedure field1d_write, field2d_write

end interface

!> Write a 1D field to its netCDF file
!@param iter Iteration
subroutine field1d_write(this, iter)

implicit none
type(field1d), intent(in) :: this
integer, intent(in) :: iter

call out_check(nf90_put_var(this%ncid, this%varid, &
this%current))

end subroutine

Introduction to Modern Fortran

Overloading

…

!> Write out the current results to netcdf file
subroutine field2d_write(this, iter)

integer, intent(in) :: iter
type(field2d), intent(in) :: this

integer :: start(3), count(3)

!Write one step of data
count = [this%x, this%y, 1] start = [1, 1, 1] ; start(3) = iter

call out_check(nf90_put_var(this%ncid, this%varid, &
this%current, start = start, count = count))

end subroutine

Introduction to Modern Fortran

Overloading

Operator Overloading

interface operator (+)
module procedure myFunction

end interface

all arithmetic and relational operators can be overloaded. You can create your own

using .XXX., where XXX is your operator.

interface assigment (=)
module procedure MySubroutine

end interface

interface is also used to create explicit interfaces for functions which are not included

in a programming unit.

Introduction to Modern Fortran

Overloading

Example: matrix maths

module matrix
use myTypes
implicit none
type, public :: matrixType
integer :: n,m
real(kpr), allocatable :: a(:,:)

end type matrixType
interface assignment (=)
module procedure equalMatrixType

end interface
interface operator (+)
module procedure addMatrixType

end interface

Introduction to Modern Fortran

Overloading

…

contains

function addMatrixType(a,b) result(c)
type(matrixType), intent(in) :: a,b
type(matrixType) :: c
allocate(c%a(a%n,a%m))
c%a=a%a+b%a; c%m=a%m; c%n=a%n

end function addMatrixType

subroutine equalMatrixType(left, right)
type(matrixType), intent(in) :: right
type(matrixType), intent(inout) :: left
left%a=right%a; left%m=right%m; left%n=right%n

end subroutine equalMatrixType
end module matrix

Introduction to Modern Fortran

Input/Output

Introduction

General Programming Concepts

Source file rules

Intrinsic and user data types

Flow constructs

Functions and subroutines

Modules

Arrays and array constructs

Dynamical allocation of memory

Overloading

Input/Output

Pointers

Preprocessing

Compile/Link/Debug

Command line arguments

Random numbers

Extras

Introduction to Modern Fortran

Input/Output

read/write/print

read(*,*) <variable>
write(*,*) <variable/constant>
print *, <variable/constant>

print *, is equivalent to write(*,*)

in read(*,*) first *means standard input

in write(*,*) first *means standard output

in both second *means no format assumed

format can be specified in place or at a later time using labels

write(*,’(2(i0,1x))’)i,j !or
write(*,101)i,j
101 Format(2(i0,1x))

Introduction to Modern Fortran

Input/Output

read

integer :: a
real :: f
character(len=100) :: h=”12.5 10”
write(*,*)”read integer: ”
read(INPUT_UNIT,*)a
write(*,*)”read real: ”
read(*,*) f
print *,a,f
read(h,*)f,a
print *,a,f

Introduction to Modern Fortran

Input/Output

standard units

Fortran has two output statements: print and write. The print:

print *, “Hello world”

Write takes an output unit, format statement and contents

write (OUTPUT_UNIT, ‘(A10)’) my_name
write (*,*) “Hello world”
write (ERROR_UNIT,*) “Hello world”

use iso_fortran_env to get OUTPUT_UNIT, ERROR_UNIT and INPUT_UNIT

Introduction to Modern Fortran

Input/Output

formatting

integer :: i=10
write(*,'(a10,i0)')”i0 ”,i
write(*,'(a10,i5)')”i5 ”,i
write(*,'(a10,i5.3)')”i5.3 ”,i
write(*,'(a10,i1)')”i1 ”, i

i0 10
i5 10
i5.3 010
i1 *

Introduction to Modern Fortran

Input/Output

… reals

real :: b=10.043
complex :: c=cmplx(1.02, 3.04)
write(*,'(a12,2(F16.8,1x))')”2(F16.8,1x)”, c
write(*,'(a10,f16.8)') ”f16.8 ”,b
write(*,'(a10,e16.8)') ”e16.8 ”,b
write(*,'(a10,e16.8 E3)') ”e16.8 E3”,b
write(*,'(a10,d16.8)') ”d16.8 ”,b
write(*,'(a10,en16.8)') ”en16.8 ”,b
write(*,'(a10,en16.8 e3)') ”en16.8 e3”,b
write(*,'(a10,es16.8)') ”es16.8 ”,b
write(*,'(a10,es16.8 e3)') ”es16.8 e3”,b

Introduction to Modern Fortran

Input/Output

…

2(F16.8,1x) 1.01999998 3.03999996
f16.8 10.04300022
e16.8 0.10043000E+02

e16.8 E3 0.10043000E+002
d16.8 0.10043000D+02
en16.8 10.04300022E+00

en16.8 e3 10.04300022E+000
es16.8 1.00430002E+01

es16.8 e3 1.00430002E+001

Introduction to Modern Fortran

Input/Output

generals

logical :: l=.true.
write(*,'(a10,g16.8 e3)')”g16.8 e3”, “characters”
write(*,'(a10,l4)')”l4”, l
write(*,'(a10,g16.8 e3)')”g16.8 e3”, i
write(*,'(a10,g16.8 e3)')”g16.8 e3”, b
write(*,'(a10,g16.8 e3)')”g16.8 e3”, l

g16.8 e3 characters
l4 T

g16.8 e3 10
g16.8 e3 10.043000
g16.8 e3 T

Introduction to Modern Fortran

Input/Output

internal units

program internal
implicit none
character(len=100) :: s1,s2
integer :: a,info
real :: b
s1=” 10 40.5”
read(s1,*,iostat=info) a,b
a=a+1; b=b-1.0
write(s2,'(a2,i0,1x,a2,f16.8)')”a=”,a,”b=”,b
write(*,'(a50)',advance=”no”)trim(s2)
write(*,*)”this goes on the prev line”

end program internal

a=11 b= 39.50000000 this goes on the prev line

Introduction to Modern Fortran

Input/Output

more on formats

program test
implicit none

integer, allocatable :: a(:)
real, allocatable :: b(:)
integer :: i,n=13,m=15

allocate(a(n),b(m))
a=[(i*i/3,i=1,n)]
b=[(i/3.0,i=1,m)]
call print_me_nice(a,b,n,m)

write(*,'(*(g0,” ”))') b
deallocate(a,b)

contains

Introduction to Modern Fortran

Input/Output

…

subroutine print_me_nice(a,b,n,m)
integer, intent(in) :: a(:),n,m
real, intent(in) :: b(:)

character(len=50) :: fma,fmb
integer :: i

write(fma,”(a,i0,a)”) ”(”,n,”(i0,1x))”
write(fmb,'(a,i0,a)'),”(”,m,”(g0,1x))”

write(*,trim(fma))(a(i),i=1,n)
write(*,trim(fmb))(b(i),i=1,m)

end subroutine print_me_nice
end program test

Introduction to Modern Fortran

Input/Output

more on units

▶ Units are integers for example * in read is expanded to INPUT_UNIT (5), in write

to OUTPUT_UNIT (6) One can redirect output to standard error using unit

ERROR_UNIT (0).

▶ the standard name constants are loaded by using use iso_fortran_env

write(777,*) i

If unit 777 is associated with a file, i is printed in it, if not file fort.777 is created and i

printed there

Introduction to Modern Fortran

Input/Output

writing to a file

program file
implicit none
logical :: isopen,isit;integer :: myunit
inquire(file=”myfile.dat”,exist=isit,opened=isopen,&

number=myunit)
print *, isit, isopen, myunit
open(101,file=”myfile.dat”,status=”unknown”, &

action=”write”)
inquire(file=”myfile.dat”,exist=isit,opened=isopen,&

number=myunit)
print *, isit, isopen, myunit
write(101,*)”my first line in a file”
close(101)

end program file

Introduction to Modern Fortran

Input/Output

…

T F -1
T T 101

Status = old,new,scratch, replace, unknown

Action = read,write, readwrite

Position = asis, rewind, append

Form= formatted, unformatted

When used in unformatted form read/write statements should not have a format

specifier.

Introduction to Modern Fortran

Input/Output

reading from a file

program fileascii
implicit none
integer :: a=10,b,info

open(101,file=”myfile.dat”,status=”unknown”, &
action=”write”)

write(101,*)a
close(101)
open(101,file=”myfile.dat”,status=”old”, action=”read”)
read(101,*,iostat=info)b
close(101)
write(*,*)b,b+1

end program fileascii

10 11

Introduction to Modern Fortran

Input/Output

…

program filebin
implicit none

integer :: a=10,b,info
open(101,file=”myfile.dat”,status=”unknown”, &
action=”write”,form=”unformatted”)

write(101)a
close(101)
open(101,file=”myfile.dat”,status=”old”, action=”read”, &

form=”unformatted”)
read(101,iostat=info)b
close(101)
write(*,*)b,b+1

end program filebin

10 11

Introduction to Modern Fortran

Input/Output

binary files

▶ cannot be understood directly by humans

▶ Keep all the precision for numbers

▶ Are machine dependent (big_endian, little_endian)

▶ Are smaller than the ascii counterparts

Introduction to Modern Fortran

Input/Output

newunit

integer :: myunit

myunit = 10
open(newunit=myunit,file='test')

▶ automatically selects a unit number that does not interfere with other units

already connected

▶ you will get a negative number different of -1 or any of the INPUT_UNIT,

ERROR_UNIT, OUTPUT_UNIT

▶ if you get en error the value of myunit is unchanged

Introduction to Modern Fortran

Pointers

Introduction

General Programming Concepts

Source file rules

Intrinsic and user data types

Flow constructs

Functions and subroutines

Modules

Arrays and array constructs

Dynamical allocation of memory

Overloading

Input/Output

Pointers

Preprocessing

Compile/Link/Debug

Command line arguments

Random numbers

Extras

Introduction to Modern Fortran

Pointers

Introduction

▶ Pointer: the address of a data item

▶ Pointers contain no data, they just point to where the data is stored

▶ Fortran pointers do not have the same meaning as the c pointers. They are

synonyms or aliases to variables

▶ Used to access portions of arrays or pass data through reference

▶ Suitable for dynamic data structures (lists, queues, stacks)

▶ The data to which they point is called a target

▶ A pointer has a logical status that marks its association or association with a

target

Introduction to Modern Fortran

Pointers

…

program pointers
implicit none
integer, pointer :: a,b
integer, target :: i,j,k
i=100; j=50; k=300
a=>i ! a points to i
b=>j
a=a+b ! i=i+j
print *,i,j ! 150,50
a=>k ; a=a+b ! k=k+j
a=>null()
print *, associated(a) ! false
print *,associated(b,i) ! false
print *, associated(b,j) ! true

end program pointers

Introduction to Modern Fortran

Preprocessing

Introduction

General Programming Concepts

Source file rules

Intrinsic and user data types

Flow constructs

Functions and subroutines

Modules

Arrays and array constructs

Dynamical allocation of memory

Overloading

Input/Output

Pointers

Preprocessing

Compile/Link/Debug

Command line arguments

Random numbers

Extras

Introduction to Modern Fortran

Preprocessing

Introduction

▶ preprocessing is a powerful tool that can help you to turn portions of code on

and off according to compile time parameters.

▶ preprocessing is not standard in Fortran, apart of include statement

▶ it is widely supported by all modern compilers

▶ A file that contains preprocessing statements will have its extension in capitals

▶ .F,.F77, .F90, .F95, F03 in fortran. That would determine the Fortran compiler to

preprocess the file.

▶ A Fortran file can be also preprocessed by an external tool (eg cpp, fpp)

▶ an inluded file via include does not get preprocessed.

▶ We will use preprocessing to enable/disable a second line of printing in the code.

Introduction to Modern Fortran

Preprocessing

…

program test
implicit none

write(*,*)”Hello World!!!”
#ifdef MORE

write(*,*)”From Alin”
#endif
end program test

gfortran -DMORE -o hellof.x hello.F90
./hellof.x

Hello World!!!
From Alin

gfortran -o hellof.x hello.F90
./hellof.x

Hello World!!!

Introduction to Modern Fortran

Preprocessing

Macro expansion

program macro
implicit none
#define func(x) (x*x+x)
#define one (x*x)
real :: y,x

y=10.0; x=1.0
print *, func(y)*10+y+one

end program macro

Nice and convenient for writing code but it may be a pain to read, try to avoid.

Introduction to Modern Fortran

Compile/Link/Debug

Introduction

General Programming Concepts

Source file rules

Intrinsic and user data types

Flow constructs

Functions and subroutines

Modules

Arrays and array constructs

Dynamical allocation of memory

Overloading

Input/Output

Pointers

Preprocessing

Compile/Link/Debug

Command line arguments

Random numbers

Extras

Introduction to Modern Fortran

Compile/Link/Debug

Compiling

Transforms a source file (text file) into an object file(.o)

▶ the compiler preproceses the file according to the rules with specified, if any.

▶ validates the source file.

▶ Generates the object file

gfortran –c –o myobject.o test.f90

if no –o option is specified test.o is generated

Introduction to Modern Fortran

Compile/Link/Debug

…

$ nm comp.o
U _gfortran_set_args
U _gfortran_set_options
U _gfortran_st_write
U _gfortran_st_write_done
U _gfortran_transfer_array_write
U _gfortran_transfer_integer_write

0000000000000286 T main
000000000000009e t MAIN__
0000000000000010 r options.10.3823
0000000000000000 t square.3791

Introduction to Modern Fortran

Compile/Link/Debug

Include paths

Fortran looks in directories for .mod files and include files that are required by the

compile line

If adding code from multiple directories, or third-party libraries, use “-I <directory>” to

include these, e.g.

gfortran -c -I<path to mods> module.f90

This directory can include both include files and module files.

NB: If you include a blank “-I” without specifying a directory, it means “ignore the

current directory”.

Introduction to Modern Fortran

Compile/Link/Debug

Linking

Linking transforms an object file .o into an executable file by adding to it system

libraries and user libraries.

gfortran -o comp.X comp.o
ldd comp.X

linux-vdso.so.1 (0x00007ffc6cd30000)
libgfortran.so.5 => /usr/lib64/libgfortran.so.5 (0x00007fc71bbe6000)
libm.so.6 => /lib64/libm.so.6 (0x00007fc71b853000)
libgcc_s.so.1 => /lib64/libgcc_s.so.1 (0x00007fc71b63b000)
libquadmath.so.0 => /usr/lib64/libquadmath.so.0 (0x00007fc71b3fb000)
libc.so.6 => /lib64/libc.so.6 (0x00007fc71b03b000)
libz.so.1 => /lib64/libz.so.1 (0x00007fc71ae24000)
/lib64/ld-linux-x86-64.so.2 (0x00007fc71c055000)

one can try to do a nm on the executable. all the symbols should be listed… pretty

unreadable, isn’t it?

Introduction to Modern Fortran

Compile/Link/Debug

Libraries

▶ Libraries are precompiled collections of code (sets of .o files)

▶ Typically named: libfoo.a or libbar.so

The compiler links against these using the syntax:

gfortran -o ./myprog prog.f90 -lfoo -lbar

If the library is not in the current directory, you need to specify the directory with “-L”

gfortran -o ./myprog prog.f90 -L<path to foo> -lfoo \
-L<path to bar> -lbar

Introduction to Modern Fortran

Compile/Link/Debug

…

you can compile and link in one go

gfortran -o comp.X comp.F90

be careful at compilation errors versus linking errors.

▶ errors relating to syntax are compilation errors

▶ errors relating to missing functions are linking errors.

Introduction to Modern Fortran

Compile/Link/Debug

Debugging

Debug: the process of fixing the things

you can use special tools like gdb or the compiler via flags.

-g -Wextra -frecord-gcc-switches -O0 -std=f2008 -pedantic -fbacktrace
-fcheck=all -finit-integer=2147483647
-finit-real=snan -finit-logical=true -finit-character=42
-finit-derived -ffpe-trap=invalid,zero,overflow
-fdump-core -fstack-protector-all -Wall -pipe

other useful flags -fsanitize

Introduction to Modern Fortran

Compile/Link/Debug

Example

program test
implicit none

integer :: a(5)
real :: c
a=10
call square(a)
print *,a
print *,a(5)*c

contains
subroutine square(b)
integer :: b(:)
a=a*b

end subroutine square
end program test

Introduction to Modern Fortran

Compile/Link/Debug

…

gfortran -O0 -std=f2008 -pedantic -fbacktrace -fcheck=all \
-finit-integer=200000 -finit-real=snan -finit-logical=true \
-finit-character=42 -finit-derived -ffpe-trap=invalid,zero,overflow \
-g comp.F90 -o comp.X
./comp.X

100 100 100 100 100
Program received signal SIGFPE: Floating-point exception -

erroneous arithmetic operation.
Backtrace for this error:
#3 0x400bdc in test

at ../comp.F90:12
#4 0x400c59 in main

at ../comp.F90:12
Floating point exception (core dumped)

Introduction to Modern Fortran

Command line arguments

Introduction

General Programming Concepts

Source file rules

Intrinsic and user data types

Flow constructs

Functions and subroutines

Modules

Arrays and array constructs

Dynamical allocation of memory

Overloading

Input/Output

Pointers

Preprocessing

Compile/Link/Debug

Command line arguments

Random numbers

Extras

Introduction to Modern Fortran

Command line arguments

Introduction

A very common occurrence in C/C++/Python they do not appear in Fortran standard

up to 2003 version.

Your friends

get_command,
command_argument_count
get_command_argument

Introduction to Modern Fortran

Command line arguments

…

program commandLine
implicit none
integer :: count,i
character(len=255) :: cmd
character(len=25) :: argum
call get_command(cmd)
write (*,*) trim(cmd)
count = command_argument_count()
write(*,*)”No of arguments: ”, count
do i =1, count
call get_command_argument(i, argum)
write(*,'(a,i0,a)') ”argument no ”,i, &

” is: ”//trim(argum)
enddo

end program commandLine

Introduction to Modern Fortran

Command line arguments

…

./test 2003 577 889 inp

./test 2003 577 889 inp
No of arguments: 4
argument no 1 is: 2003
argument no 2 is: 577
argument no 3 is: 889
argument no 4 is: inp

Introduction to Modern Fortran

Random numbers

Introduction

General Programming Concepts

Source file rules

Intrinsic and user data types

Flow constructs

Functions and subroutines

Modules

Arrays and array constructs

Dynamical allocation of memory

Overloading

Input/Output

Pointers

Preprocessing

Compile/Link/Debug

Command line arguments

Random numbers

Extras

Introduction to Modern Fortran

Random numbers

…

program random
implicit none
integer(kind=4), allocatable :: seed(:)
real(kind=8) :: r(2)
integer :: is,i,p

is = 13
call random_seed(size=p)
allocate(seed(p))
seed = 17*[(i-is,i=1,p)]
call random_seed(put=seed)
deallocate(seed)
call random_number(r)

print *,r
end program random

add output of different compilers

Introduction to Modern Fortran

Random numbers

More

▶ interoperability with C

▶ co-arrays

▶ submodules

▶ oop features

▶ ieee floating point standard conformance

Introduction to Modern Fortran

Extras

Introduction

General Programming Concepts

Source file rules

Intrinsic and user data types

Flow constructs

Functions and subroutines

Modules

Arrays and array constructs

Dynamical allocation of memory

Overloading

Input/Output

Pointers

Preprocessing

Compile/Link/Debug

Command line arguments

Random numbers

Extras

Introduction to Modern Fortran

Extras

Software engineering

▶ use libraries, do not reinvent the wheel (unless you are a wheel maker)

▶ use a version control system, git is one of the most popular and de facto

standard in open source world (git-scm.org).

▶ use a build system for your project. Quite few out there, cmake is one of the

popular ones used by some scientific projects. (cmake.org), meson

▶ test your code, use one of the continuous integration platforms (gitlab-ci, travis,

jenkins, …) also check the coverage of your code

▶ use tools to instrument code

▶ have a coding style document and contribution guide.

Introduction to Modern Fortran

Extras

gprof

gfortran -o hello.x -p hello.F90
./hello.x

a new file gmon.out is created

gprof ./hello.x
Flat profile:

Each sample counts as 0.01 seconds.
% cumulative self self total

time seconds seconds calls ms/call ms/call name
48.81 0.18 0.18 1 180.58 321.03 MAIN__
37.96 0.32 0.14 200000000 0.00 0.00 __mymath_MOD_mysqrt
6.78 0.35 0.03 __do_global_dtors_aux
6.78 0.37 0.03 frame_dummy

Introduction to Modern Fortran

Extras

Some Bad patterns

Introduction to Modern Fortran

Extras

go to

Did I mention not to use go to already?

▶ sometimes rewritting code with go to to structured form can be a pain in the

neck.

▶ reimplementing the algortihm may be much simpler and faster.

Introduction to Modern Fortran

Extras

one routine for many things

subroutine answer_to_all(...,stage)

block 1 of code
if stage == 1

block 2 of code
else

block 3 of code
end if

Introduction to Modern Fortran

Extras

…

subroutine block_1
block 1 of code

subroutine block_2
block 2 of code

subroutie block_3
block 3 of code

Introduction to Modern Fortran

Extras

use named constants instead of cryptic maps

if vdw == 0 then
block 1

elseif vdw == 1 then
block 2

elseif vdw == 2 then
block 3

energy = energies(1)+energies(3)

Introduction to Modern Fortran

Extras

…

integer, parameter :: POT_LJ=0
integer, parameter :: POT_MORSE=1
integer, parameter :: POT_BUCK=2

integer, parameter :: ENER_KINETIC=1
integer, parameter :: ENER_POTENTIAL=3

if vdw == POT_LJ then
block 1

elseif vdw == POT_MORSE then
block 2

elseif vdw == POT_BUCK then
block 3

energy = energies(ENER_KINETIC)+energies(ENER_POTENTIAL)

Introduction to Modern Fortran

Extras

modules are not common blocks

▶ do not use modules as a replacement for common blocks.

▶ keeping variables in modules and sharing them via them looks like a great idea

▶ until you try to use more than one core for your programme.

Introduction to Modern Fortran

Extras

Q&A

Introduction to Modern Fortran

Extras

<..>

𝑥𝑛+1 = 108 −
815 −

1500
𝑥𝑛−1

𝑥𝑛
𝑥0 = 4

𝑥1 =
17
4

𝑥42 = ?

	Introduction
	General Programming Concepts
	Source file rules
	Intrinsic and user data types
	Flow constructs
	Functions and subroutines
	Modules
	Arrays and array constructs
	Dynamical allocation of memory
	Overloading
	Input/Output
	Pointers
	Preprocessing
	Compile/Link/Debug
	Command line arguments
	Random numbers
	Extras

